CAHRS Workshop

Testing for Crash & Safety Simulation

Hubert Lobo DatapointLabs

New York, USA

DatapointLabs

DatapointLabs

Research quality material testing
ISO 17025 production environment
Results in 5 days (48 hour RUSH service)
Web-based quotation & data delivery
Domain expertise in CAE material calibration

- TestPaks[®] = Materials testing + CAE material parameter conversion
 - metal, plastic, foam, rubber, composites...

TestPaks.com matereality

DatapointLabs

over 20 CAE software codes

Topics

- A test philosophy for representing rate dependency of materials
- Experimental technique including sampling and specimen geometries
- Assessment of crash material data quality, expected trends & validation
- Specific comments for unfilled and fiberfilled polymers, foams, rubber and metals.

Getting pertinent properties

- Importance of measuring the right property
- Artifact free data
 - Properly designed experiments
 - eg. not using crosshead displacement to calculate strain
- Traceable data (ISO 17025)
 - NIST traceable instruments
 - Certified trained technicians

Getting the right samples

- Spatial variation
 Properties vary with location
 Forming, stretching, molding...
 Environmental variation
 Ageing and conditioning
 Process variation
 Degradation from processing
 - Recycled materials

Metals

Relatively well behaved
Models designed to match behavior
Challenges lie with post yield non-Mises failure envelopes
Scaling of yield surface with strain rate
Work of Nakajima, Dubois, Hooputra

Plastics

- Not well behaved
 Models not designed for plastics crash simulation
 Complex models are expensive
 Can we develop best practices for
 - adapting common models to plastics

Plastics Behavior - Basics

TestPaks.com matereal

DatapointLabs

Plastics Rate Effects

Modulus may depend on rate

TestPaks.com matereality

DatapointLabs

Plastics Rate Effects

• Fail strain may be rate dependent

Material Testing

- Instron servo-hydraulic UTM
 Dynamic load cell
 Test at 0.01, 0.1, 110, 100/s
 strain rates
- Temperatures: -40 to 150C

tens_slow.mpg

Tens.mpg

Test Specimens

ASTM D638Type V⁻⁻ Preparation CNC from plaque CNC from part Molded Variability processing orientation thickness

gate region

DatapointLabs

Modeling simple ductile plastics

- Modulus is not rate dependent
- Large strains to failure
- Post-yield necking
- Plasticity curves vary with strain rate
- Failure strain independent of strain rate
- LS-DYNA, ANSYS, ABAQUS, PAMCRASH

Choosing EMOD

Engineering Strain (%)

TestPaks.com matereality DatapointLabs

Post-yield with necking (Deihl)

TestPaks.com matereality

DatapointLabs

Fail Limitations

When FAIL f(strain rate)

Modeling Rate Dependency

Does not correlate well with plastics Appendency Cowper Symonds LCSR Capture model independent behavior

Eyring Model

- Eyring Model
 - Yield stress v. log strain rate is linear
 - Best form for plastics
- Fit yield stress v. log strain rate data to Eyring equation
- Can submit to LSDYNA MAT24 as table using LCSR

MAT24 validation

TestPaks.com matereality DatapointLabs

Brittle plastics

- Modulus is rate dependent
 Small strains to failure
 Brittle failure
 Failure strain decreases with
 - increasing strain rate
- LSDYNA MAT19

Methodology for MAT 19

- Determine elastic limit at quasi-static strain rate
 Use elastic limit for von-Mises yield
 Define failure
 - failure stress v. strain rate table

Ductile-brittle transitions

True Tensile Stress-Strain Curves

DatapointLabs

TestPaks.com materealit

Fiber Filled Plastics

- Digimat MX
 Material model reverse engineered from standard experiment
- Perform-injection-molding simulation
- Apply Digimat material model to transfer data to crash simulation
- Crash model has spatially oriented properties

Basic Digimat TestPak Protocol

Mold 100X300X3.16mm plaques

- Edge gated on 100 mm end
- Long flow length
- Fully developed flow
- Highly fiber orientation
- Cut test specimens by CNC
- 5 specimens each (0°, 90°)
- Obtain true stress-strain data

TestPaks.com matereal

Datapoint abs

Advanced Models

- MATSAMP (LS-DYNA)
- Standard rate dependent model
- Add non-mises failure envelope
 - Compression
 - Shear
- Add triaxiality
 - Post yield transverse strain
- Add unloading

TestPaks.com matereal

DatapointLabs

Pros and Cons

- Better failure envelope modeling
- Greater cost
- More complex model
- Greater simulation accuracy in difficult cases
- Cost-benefit not certain for general use

Foams

Different deformation modes

- Crushable
- Elastic with or without damage
- Visco-elastic

Large volumetric strain component

Effect of Poisson's Ratio = 0

- Material compacts by eliminating air.
- No lateral deformation
- Poisson's Ratio -> 0
- Axial strain ≅ volumetric strain
- True for
 - open cell foams
 - crushable foams
- May not be true for
 - closed cell foams
 - elastomeric foams

Typical Stress-Strain Data

TestPaks.com matereality CatapointLabs

Test Strategy

- Compressive stress-strain
 5 decades of strain rate

 .01, .1, 1, 10, 100 /s
 Temperatures
 .100 to 150C

 Optional tests
 Tensile (for cut-off stress)
 - Shear (as required)

Hisp_comp.mpg

TestPaks.com matereali

Test Instruments

PU Foam-stress strain

PU Foam- rate effects

DatapointLabs

PU Foam recovery

NUME

TestPaks.com matereality DatapointLabs

Conclusions

- Choice of material model depends on
 - material
 - test data
 - situation complexity
- Proper selection = reasonable model
- Simple improvements can add power
- Validated models represent baseline
- Models can be tuned for multi-axial loadings

TestPaks.com matereality DatapointLabs