Challenges in the Modeling of Plastics in Computer Simulation

Hubert Lobo President

DatapointLabs, Ithaca NY

Impact of Simulation

- Massive benefit to injection-molding process
- Great improvement in part quality
 - Productivity increases
 - Reduction in scrap

atapointLabs

- Significant benefit to plastic part design
 - Understand how to use these complex materials
 - Create novel parts and products
 - Prevent in-the-field part failure

Challenges

- Plastics are very complex----
- Not all behavior is well understood
 - Experimental/artifacts accompany the data
 - Mathematical material models have limitations
 - Behavior is not correctly represented in simulation
- These limitations can cause errors
- With proper understanding, good design decisions can be made

What Makes Plastics Complex

- Non-Newtonian, non-isothermal flow
- Cooling rate- and shear-dependent crystallization
- Viscoelastic (time-based behavior)
- Non-linear elasticity
- Complex plasticity (pre-yield, post-yield)
- Properties change over product operational temperature and environmental exposure

Current Topics

- Injection-mold analysis
- Alterial model inconsistencies
 - Fiber-orientation prediction
- Finite element analysis
 - Non-linear elasto-plasticity (most plastics)
 - Hyperelastic with plasticity (elastomers)
- Fiber orientation (fiber-filled plastics)
- The promise of validation

Data for Injection-mold Analysis

- Viscosity vs. shear rate and temperature
- Thermal conductivity vs. temperature
- Specific heat vs. temperature
- ?• Transition temperature
- **?•** PVT
- ?• Shrinkage data
 - Mechanical propertiesCRIMS (Moldflow)

Transitions: No-flow Temperature

• Impact on simulation unclear

atapointLabs

How to Measure PVT

Shrinkage predictions can be affected

Accounting for Rate Effects in PVT

- Possible to correct PVT data using DSC high-cooling-rate curves (H. Lobo, ANTEC 1999)
- Strategy is incorrect
 - DSC is quiescent: high super-cooling effect
 - Shear effects in molding mitigate super-cooling effect
 (Kennedy, Janeshitz-Kriegl)

DatapointLabs

Solid State Behavior of Polymers

Effect of Environment: Temperature

- Properties and dependencies--change with temperature
 - Modulus
 - Ductile-brittle
 - Rate dependency

Effect of Environment: Moisture

Effect of Environment: In-vivo

Models for Ductile Plastics

- True stress-strain curves
 - UTM with extension eters
 Testing to yield or break
- Material model: elasto-plasticity
 - Reduce to elasto-plasticity based on yield point
 - Bilinear
 - Multilinear
- Usage

atapointLabs

- Large deformation
- von Mises yield

Elasto-plasticity in Metals

• Evaluate a modulus 6.0e+8 5.0e+8 Define elastic limit 4.0e+8 • Calculate multi-point 3.0e+8 2.0e+8 plasticity 1.0e+8 $\varepsilon_t = \underline{E} + \varepsilon_p^{\vee}$ 0 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 Strain σ

where, E = elastic modulus (MPa) $\sigma_t = true stress (MPa)$

Comparing Metal to Plastic

Polymer Elasto-plasticity

- Non-linear elasticity
- Elastic limit well below classical yield point
- Significant plastic strains prior to yield
- Post-yield with necking behavior

Engineering Strain (%)

Modeling Options

Applying Abaqus FeFp Model

- Non-linear hyperelasticity with pre-yield plasticity
- Accurate representation of elastic behavior
- Accurate representation of plasticity

(Lobo & Hurtado, Abaqus 2006)

A True Representation of Plasticity

Post-yield Ductile Behavior

Digital Image Correlation (DIC)

- Stereo camera system (ARAMIS)
- Simultaneous XYZ dimension change
- Complete surface is measured
- Post-measurement selection of region of interest (Lobo et al., LS-DYNA 2013)

Reasonable Post-yield Approximation

Fiber-filled Plastics

- Spatial orientation of fibers
- Properties vary spatially
- Can be approximated
 Worst case: use cross-flow data

Source:e-Xstream

- NEW: fiber-orientation material modeling
 - Perform injection-molding simulation
 - Obtain fiber orientations
 - Calculate local orientation-based properties
 - Send to FEA

Typical Test Protocol

- Mold long plaques
 - Edge gated: short end
 - Fully developed flow
 - High fiber orientation
- Cut test specimens
 0°, 90°, 45°, ...
- Obtain true stressstrain data
- Calibrate material model

matereality

Example: Airbag Housing

Impact on Failure

The Promise of Validation

- Open loop validation
 - Carefully designed benchmark models
 - Not real-life component
 - Multi-mode case
 - Well-defined boundary conditions
 - Load cases reproducible in virtual and real life

Dynamic FEA TestBench Model

- ASTM D3763 falling dart impact
- Multi-axial loading with welldefined boundary conditions
 – Dart with a ½-inch rounded tip
 – Dart weight of 22.68 kg
 – Disk dimensions
 • Thickness = ~3 mm
 - Diameter = 76 mm
 - B.C.s: fixed edges
 - I.C.s: initial velocity of 3.3m/s

Model Complexities

- Stress modes
 - Biaxial
 - Shear
 - Bending ----
- Rate-dependent plasticity
 Complex failure

Simulation v. Test

Force vs Displacement

In Closing...

- Do not oversimplify
- Understand model limitations
- Use appropriate data
- Use self-consistent data
- Validate where possible

Acknowledgements

- J. Hurtado, Abaqus FeFp model
- Sylvain Calmels e-Xstream Engineering
- Brian Croop, DatapointLabs
- Dan Roy, DatapointLabs DIC
- Megan Lobdell, DatapointLabs Validation

Remembrance

- Dr. VW Wang (passed away Dec 10th 2014)
- Authored the first science-based injectionmolding simulation code (Cornell University, PhD 1985)
 Founder of C-MOLD

