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Impact of Simulation 

• Massive benefit to injection-molding process 

– Great improvement in part quality 

– Productivity increases 

– Reduction in scrap 

• Significant benefit to plastic part design 

– Understand how to use these complex materials 

– Create novel parts and products 

– Prevent in-the-field part failure 
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Challenges 

• Plastics are very complex 

– Not all behavior is well understood 

– Experimental artifacts accompany the data 

– Mathematical material models have limitations 

– Behavior is not correctly represented in simulation 

• These limitations can cause errors  

• With proper understanding, good design 

decisions can be made 
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What Makes Plastics Complex 

• Non-Newtonian, non-isothermal flow 

• Cooling rate- and shear-dependent crystallization 

• Viscoelastic (time-based behavior) 

• Non-linear elasticity 

• Complex plasticity (pre-yield, post-yield) 

• Properties change over product operational 

temperature and environmental exposure 
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Current Topics 

• Injection-mold analysis 

– Material model inconsistencies  

– Fiber-orientation prediction 

• Finite element analysis 

– Non-linear elasto-plasticity (most plastics) 

– Hyperelastic with plasticity (elastomers) 

• Fiber orientation (fiber-filled plastics) 

• The promise of validation 
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Data for Injection-mold Analysis 

• Viscosity vs. shear rate and temperature 

• Thermal conductivity vs. temperature 

• Specific heat vs. temperature 

• Transition temperature 

• PVT 

• Shrinkage data  

– Mechanical properties  

– CRIMS (Moldflow) 

? 

? 

? 
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Transitions: No-flow Temperature 

• When does the polymer 

solidify in the mold? 

• Different test methods 

produce different transitions 

• Transition inconsistency in 

semi-crystalline polymers 

– super-cooling 

– cooling rate effect 

– viscoelastic effects 

• Impact on simulation unclear 
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How to Measure PVT 
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Accounting for Rate Effects in PVT 
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• Possible to correct 
PVT data using DSC 
high-cooling-rate 
curves 
(H. Lobo, ANTEC 1999) 

• Strategy is incorrect 

– DSC is quiescent: high 
super-cooling effect 

– Shear effects in 
molding mitigate 
super-cooling effect 

(Kennedy, Janeshitz-Kriegl) 
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Solid State Behavior of Polymers 

400% 

Brittle plastic 

(linear-elastic) 

Ductile plastic 

(elasto-plastic) Elastomer 

(hyper-elastic) 
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Effect of Environment: Temperature 

• Properties and dependencies 

change with temperature 

– Modulus 

– Ductile-brittle  

transitions 

– Rate dependency 
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Effect of Environment: Moisture 

Nylon 

DAM vs. 50% RH 
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Effect of Environment: In-vivo 

UHMWPE, 37C 

(dry vs. saline soak, 30 days) 
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Models for Ductile Plastics 

• True stress-strain curves 
– UTM with extensometers 

– Testing to yield or break  

• Material model: elasto-plasticity 
– Reduce to elasto-plasticity based on yield point 

– Bilinear 

– Multilinear 

• Usage 
– Large deformation 

– von Mises yield 
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Elasto-plasticity in Metals 

• Evaluate a modulus 

• Define elastic limit 

• Calculate multi-point 

plasticity 

where, 

E = elastic modulus (MPa) 

σt = true stress (MPa) 

 



 pt E 
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Comparing Metal to Plastic 

Aluminum 

Polycarbonate 



strengthening the materials core of manufacturing enterprises 

Polymer Elasto-plasticity 

• Non-linear elasticity 

• Elastic limit well below 

classical yield point 

• Significant plastic strains 

prior to yield 

• Post-yield with necking 

behavior 
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Modeling Options 

Fidelity to plastic point Fidelity to curve shape 
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Applying Abaqus FeFp Model 

• Non-linear hyper-

elasticity with pre-yield 

plasticity 

• Accurate representation  

of elastic behavior 

• Accurate representation  

of plasticity 

(Lobo & Hurtado, Abaqus 2006) 
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A True Representation of Plasticity 
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Post-yield Ductile Behavior 
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Digital Image Correlation (DIC) 

• Stereo camera system 

(ARAMIS) 

• Simultaneous XYZ 

dimension change 

• Complete surface is 

measured 

• Post-measurement 

selection of region of 

interest 
(Lobo et al., LS-DYNA 2013) 
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Measuring Post-yield Stress-Strain 

0

20

40

60

80

100

120

140

160

180

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

True Strain (unitless)

T
ru

e
 S

tr
e

s
s
 (

M
P

a
)

1 mm GL

2 mm GL

4 mm GL

25 mm GL

50 mm GL

y 
x 

z 



strengthening the materials core of manufacturing enterprises 

Reasonable Post-yield Approximation 
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Fiber-filled Plastics 

• Spatial orientation of fibers 

– Properties vary spatially 

• Can be approximated 

– Worst case: use cross-flow data 

• NEW: fiber-orientation material modeling 

– Perform injection-molding simulation 

– Obtain fiber orientations 

– Calculate local orientation-based properties  

– Send to FEA 

Source:e-Xstream 
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Typical Test Protocol 

• Mold long plaques 

– Edge gated: short end 

– Fully developed flow 

– High fiber orientation 

• Cut test specimens 

– 0°, 90°, 45°, … 

• Obtain true stress-
strain data 

• Calibrate material 
model 
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Example: Airbag Housing 

Source:e-Xstream 
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Impact on Failure 

Source:e-Xstream 

With Fiber Orientation 

Isotropic 
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The Promise of Validation 

• Open loop validation 

– Carefully designed benchmark models  

– Not real-life component 

– Multi-mode case 

– Well-defined boundary conditions 

– Load cases reproducible in virtual and real life 
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Dynamic FEA TestBench Model 

• ASTM D3763 falling dart 
impact  

• Multi-axial loading with well-
defined boundary conditions 

– Dart with a ½-inch rounded tip 

– Dart weight of 22.68 kg 

– Disk dimensions 
• Thickness = ~3 mm 

• Diameter = 76 mm  

– B.C.s: fixed edges  

– I.C.s: initial velocity of 3.3m/s 
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Model Complexities 

• Stress modes 

– Biaxial 

– Shear  

– Bending 

• Rate-dependent plasticity 

• Complex failure 
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Simulation v. Test 

• Percent error at peak force 

• Time: -1.0% 

• Distance: -0.52% 

• Force: 1.3% 
Force vs Time
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In Closing... 

• Do not oversimplify 

• Understand model limitations 

• Use appropriate data 

• Use self-consistent data 

• Validate where possible 
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