

The Material Modeling Conference

A Standardized Methodology for the Digimat MX Reverse Engineering Process

Hubert Lobo,
DatapointLabs, USA

Material Model Calibration Services

- Since 1995 -

DatapointLabs

expert material testing

Scope

- ü Over 200 physical properties
 - Mechanical properties
 - Thermal properties
 - Flow properties

- ü Cornell University & C-Mold
 - Cornell Injection Molding Program

- ü TestPaks for CAE/ product development
 - 25 CAE codes supported
- ü >1,000 materials tested per year
 - Wide variety of materials

tensile compressive flexural stress-strain Poisson's ratio high strain rate bulk modulus fatique visco-elasticity stress relaxation creep friction hyperelasticity thermal expansion thermal conductivity specific heat rheology

TestPaks® from DatapointLabs

Material Testing

+

Material Parameter Conversion

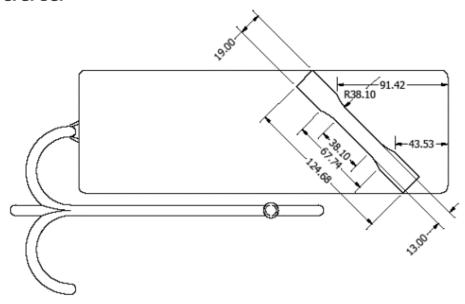
- ü precise
- ü confidential
- ü fast & economic
- ü expert technical support

no gamble

available worldwide

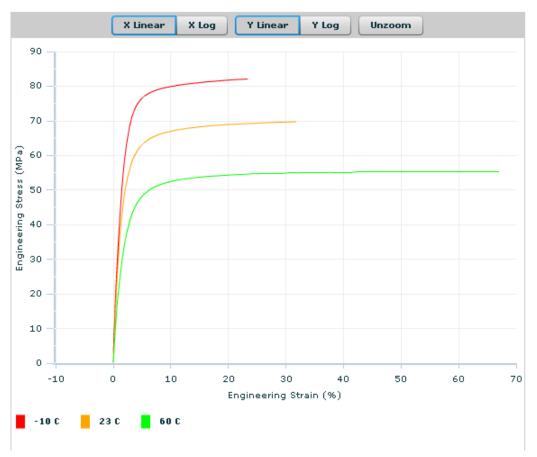
Outline

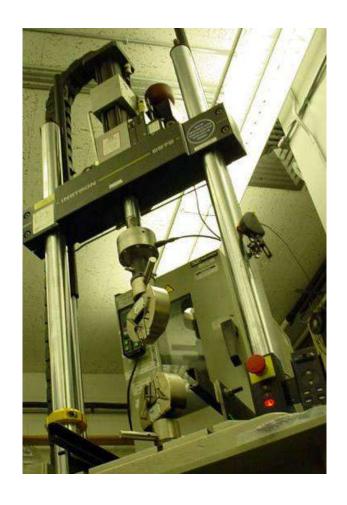
- ∴ 1. Standardized test methodology for DIGIMAT MX
 - ü Test plaque
 - ü Molding
 - ü Specimen profile
 - ü Machining procedure
 - ü Testing procedures
 - Quasi-static
 - Crash
 - Creep
 - Fatigue (under development)
- 2. Obtaining DIGIMAT data from Matereality databases
- - e-Xstream + DatapointLabs joint cooperation


The DIGIMAT MX TestPak ...how it works

- Order your Digimat MX TestPak at datapointlabs.com
- Ship one 25kg bag of material
 - ü DHL pick-up service available
- One week for molding
- One week for testing
- DIGIMAT MX-ready data delivered via Internet
 - ü Pdf test report
 - ü Digital data to client material database at www.matereality.com

Basic DIGIMAT MX TestPak Protocol


- Mold 100X200X3.16mm plaques
 - ü Edge gated on 100 mm end
 - ü Long flow length
 - ü Fully developed flow
 - ü Highly fiber orientation

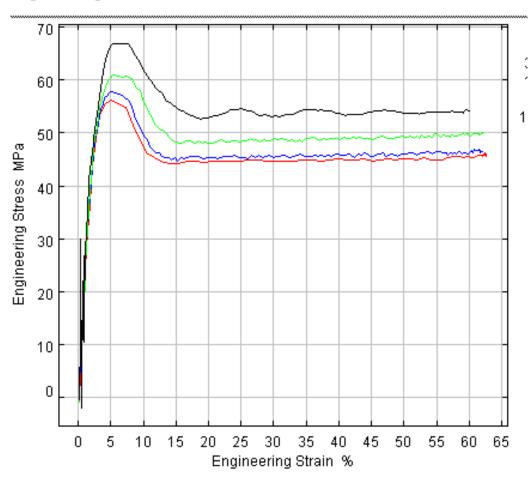

- Obtain true stress-strain data

Stress-strain data

Engineering Tensile Stress-Strain Curves

DIGIMAT MX TestPak outputs

- CAD drawings of plaque and specimens

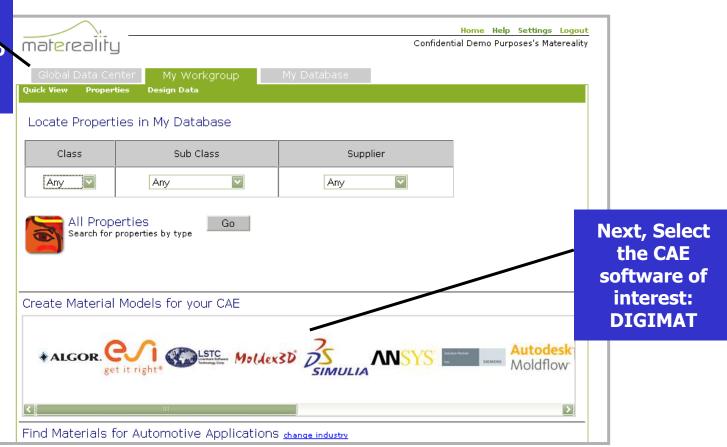

- Customer performs DIGIMAT MX Reverse Engineering
 - ü Data is ready for FEA

DIGIMAT *TestPak* options

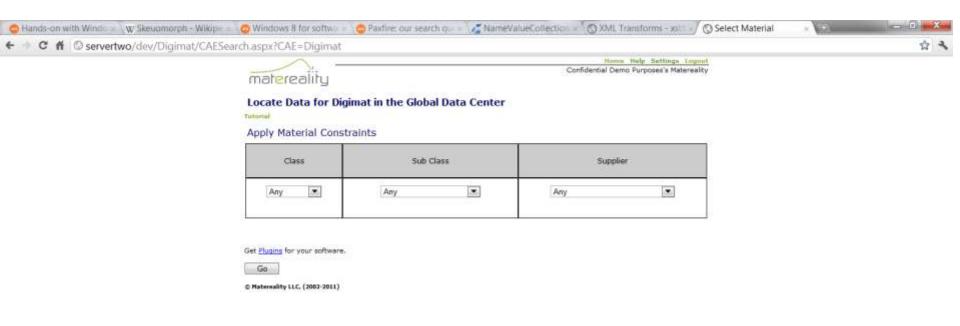
- Additional directions (10°, 20°, 45°)
- Thermomechanical (from −40° to 150°C)
- Strain-rate dependent (0.01 to 100/s)
- ∞ 3 point bend data (quasi isotropy)

Example: Crash properties for DIGIMAT

Engineering Tensile Stress-Strain Curves


Part 2: DIGIMAT CAE Modeler

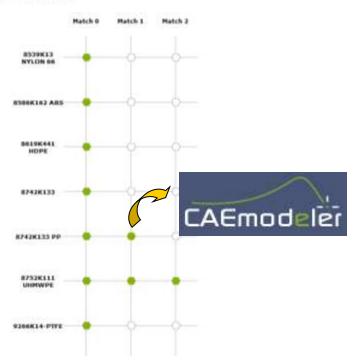
Procedure to locate and extract material data from your Matereality database to DIGIMAT

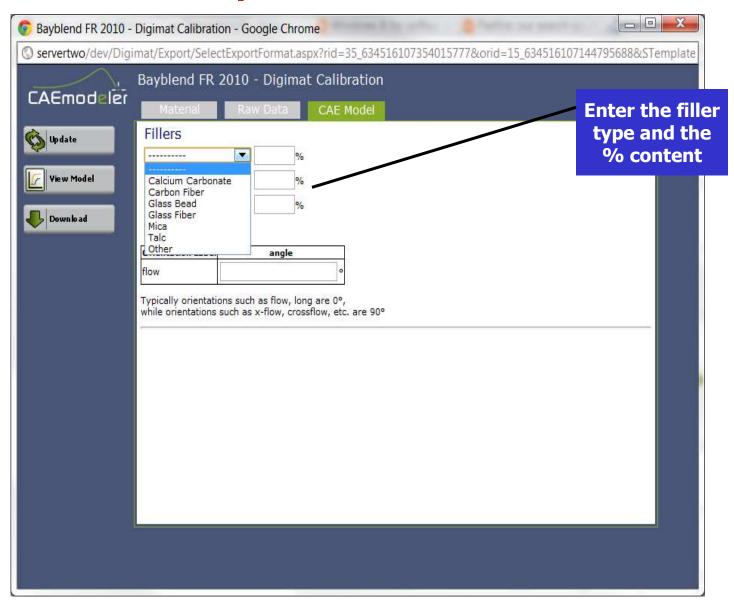


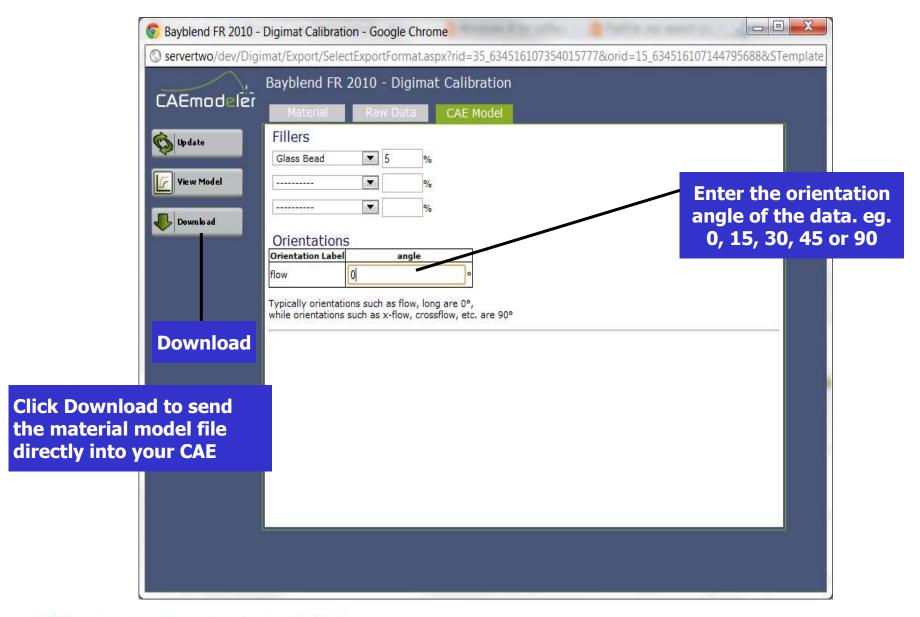
DIGIMAT CAEmodeler

You can extract data from the Global Data Center, company workgroup or your own material database

Start DIGIMAT CAE Modeler


View available DIGIMAT data


Confidential Demo Purposes's Natereality

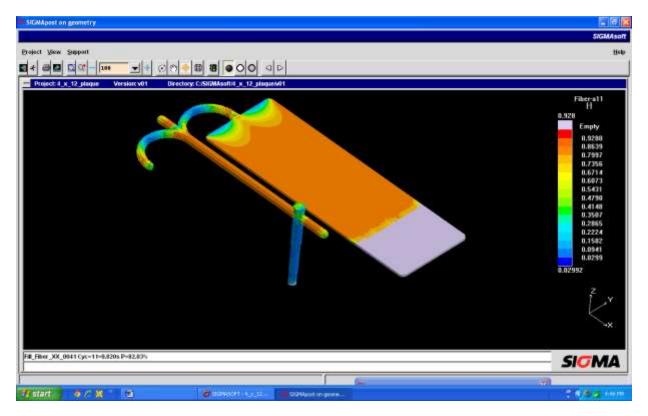

Note: Some MIRO wizard searches are highly restrictive to permit the necessary downstream data-processing. A failed search does not necessarily mean that the data you need is not within Matereality. More data may be found by doing a Property Search. Additional manual data processing may be needed to make it ready for your end-use application.

Add additional required information

Add orientation information

DIGIMAT-ready XML output

```
🕝 servertwo/dev/Digimat/Export/ModelCalibrator.aspx?rid=35_634516107354015777&o<mark>rid</mark>=15_634516107144795688... 🖃 💷 📧
Servertwo/dev/Digimat/Export/ModelCalibrator.aspx?rid=35 634516107354015777&orid=15 634516107144795688&PropResList=
This XML file does not appear to have any style information associated with it. The document tree is shown below.
 ▼<MatML Doc xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://www.matml.org/downloads/matml.xsd">
   <!-- MatML version 3.0 -->
  ▼<Material>
   ▼<BulkDetails>
       <Name>Bayblend FR 2010</Name>
       <Class>Plastic</Class>
       <Subclass>PC/ABS</Subclass>
       <Source>Baver</Source>
     ▼<PropertyData property="Tensile Properties.Tensile Modulus" technique="ISO 527-1.1993"
       source="Confidential Demo Purposes" specimen="I18655">
        <Data format="float">2700000000</Data>
        <ParameterValue format="float" parameter="Tensile Properties.test temperature">296</ParameterValue>
        <ParameterValue format="string" parameter="Tensile Properties.form">&guot;ISO Type
        1A&guot;</ParameterValue>
        <ParameterValue format="string"
        parameter="Tensile Properties.specimen orientation">"0"</ParameterValue>
        <ParameterValue format="float" parameter="Tensile Properties.thickness">0.004</ParameterValue>
        <ParameterValue format="float" parameter="Tensile Properties.width">0.01</ParameterValue>
       </PropertyData>
     ▼<PropertyData property="Tensile Properties.Tensile Strength at Break" technique="ISO 527-1.1993"
       source="Confidential Demo Purposes" specimen="I18655">
        <Data format="float">60000000</Data>
        <ParameterValue format="float" parameter="Tensile Properties.test temperature">296</ParameterValue>
        <ParameterValue format="string" parameter="Tensile Properties.form">&quot;ISO Type
        1A&guot:</ParameterValue>
        <ParameterValue format="string"
        parameter="Tensile Properties.specimen orientation">"0"</ParameterValue>
        <ParameterValue format="float" parameter="Tensile Properties.thickness">0.004</ParameterValue>
        <ParameterValue format="float" parameter="Tensile Properties.width">0.01</ParameterValue>
       </PropertyData>
     ▼<PropertyData property="Tensile Properties.Engineering Tensile Stress-
       Strain Curves.Engineering Stress" technique="ISO 527-1.1993" source="Confidential Demo Purposes"
```


Part 3

NEW DIGIMAT MX Reverse Engineering Service

a e-Xstream + DatapointLabs joint cooperation

NEW DIGIMAT MX Reverse Engineering Service

- Testing performed at DatapointLabs
- DIGIMAT MX-ready data sent to e-Xstream for reverse engineering
- Simulation-ready data delivered to client

DIGIMAT Reverse Engineering

Final outputs

❖ Provided by Jan

New Process with Reverse Engineering

- Order your Digimat TestPak at datapointlabs.com
- Ship one 25kg bag of material
 - ü DHL pick-up service
- One week for molding
- ∴ One week for testing
- One week for reverse engineering
- - ü Pdf test report
 - ü Raw digital data to client material database at www.matereality.com
 - ü DIGIMAT-ready data file

THANK YOU FOR YOUR ATTENTION

ANY QUESTION?

DatapointLabs Europe Ph:+3531 4429204

leichtenstern@datapointlabs.com jan.seyfarth@e-xstream.com

- <u>∞ www.datapointlabs.com</u>
- <u>www.matereality.com</u>
- ∞ www.e-xstream.com