

A Strategy for Material Testing and Data Management for the Automotive Industry

Hubert Lobo DatapointLabs + Matereality Ithaca, New York USA

1

DatapointLabs

+

Matereality a DatapointLabs Affiliate

EST 1995 ISO 17025 Quality

America's fastest growing private companies

Material

Testing × Data Management × Software

the science of materials... matereality

About us

Expertise

- Pioneers in materials support of product development / R&D for 18 yrs
- Broad experience with diverse materials
- Testing over 1500+ materials/yr
- Support of 34 CAE design codes
- 1000+ customers, 34 countries

Technology

- Extensible material databases
- Enabling software apps

–Plastic –Rubber –Film

-Metal

-Foam

-Adhesive

-Composite

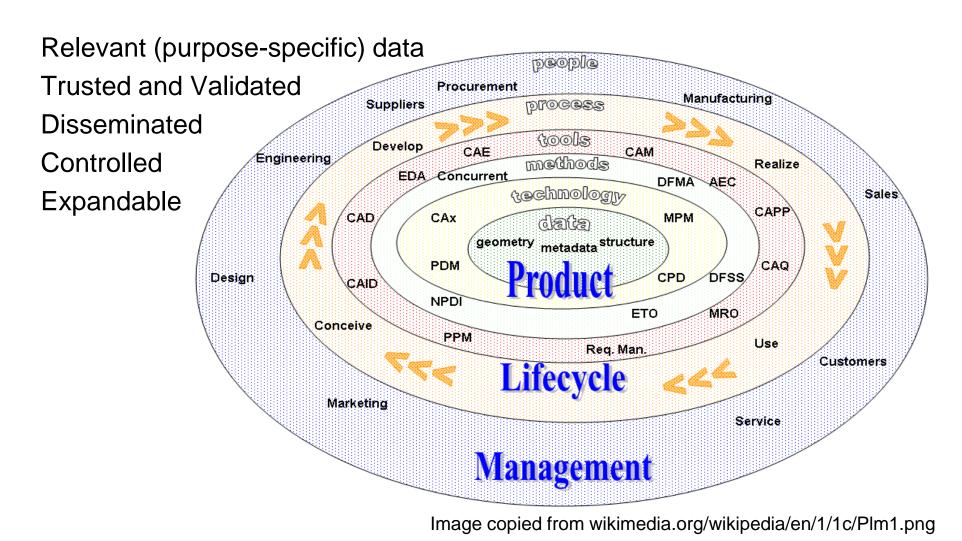
-Cement

-Ceramic

-Paper

-Fiber

Obtaining enterprise-relevant data


- Not commonly in public domain
- Free data may be too generic
- Unmanageable risk for PLM

Today's best practice

- Test your own materials
- Understand your data
- Use with confidence
- Don't lose it

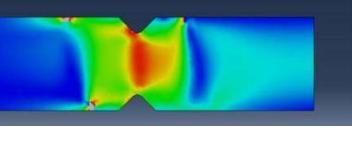
carhs.

5

Mechanical stress-strain testing in a liquid, non-ambient environment

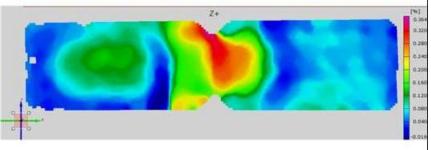
The actual material used for the product Must represent the actual end application

- Processing
 - Formed, tempered...
- Environment
 - Fuel, coolant, salt spray saturated
- Situation
 - Rate dependent
 - Temperature


© 2013 carhs.training gmbh

Data must be from a trusted source

- Internal lab
- Qualified ISO lab
- A great technical authority


Data must be valid

- It must produce a correct simulation result
- Preferably compared to a real test

Abaqus simulation

Material data is used differently

- Purchasing
- CAD
- Expert CAE
- Test Lab
- IT/Administration

App suite for each expert is different

Manage

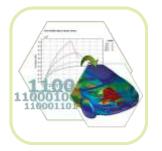
My Database

CAE Modeler

Model Library

Messages

Activity Tracker


Free Databases

8

CAE Modelers

- Take raw data and convert to material parameters
- Write material cards to different CAE
- Manage software version changes

Model Libraries

- Manage material cards
- Export project cards
- Card version control

Traceability between material card and material data Assignment of roles for different experts

- materials engineer
- CAE expert
- Designer
- ..

Exposing the right data for each expert Sequestration of material data and material cards Version control Activity logging

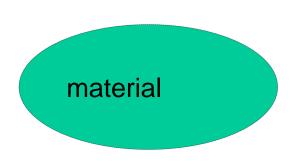
New materials are being explored

New processes are being explored

Each new material-process combination = a different material model Need user ability to add:

- new materials, processing, compositions
- new properties
- new CAE Models

proven expandability is a requirement for future-proofing



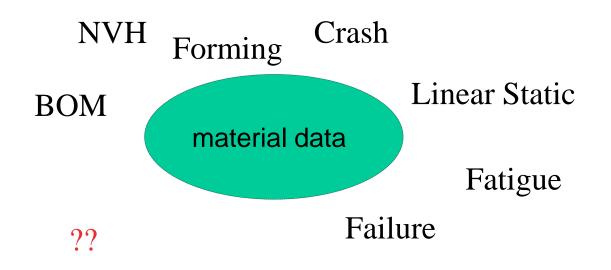
Capture the true nature of the material

- Correctly
- Completely

Compositions Layups Welds Coatings

Processing & Sequence Cast Forged Heat treated Injection molded

Environments Fuel soaked Heat aged


12

Vision- projecting the material into design/CAE

Consistency & fidelity across various simulations

• It is the same material after all

13

Material modeling space can be complex

- Physical complexity
- Mathematical complexity
- Data conversion complexity (material parameter generation)
- A different expertise than CAE
 - Usually an expert reference source...institute, reference lab...

Suggested philosophy

- First, do it right
- Then use and reuse

Material is appropriate

- Is this the actual material being simulated?
- Composition, processing, processing sequence...

Material data

- From traceable source (ISO 17025)
- Clean, with minimal noise

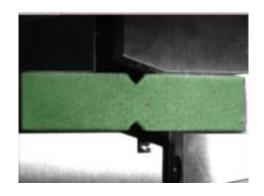
Data is relevant to the simulation

Follows material laws

15

Testing

Use of conventional methods Layering in DIC for advanced measurements Meeting design timelines


Contact extensometry

- conventional
- quick
- traceable

Video extensometry

- advanced
- quick
- traceable

Aramis DIC

- complex
- slow

Raw data must be transformed to material parameters

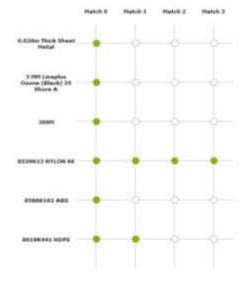
- Simple just collect and deploy
- Medium discretize curve and calculate
- Complex fit equation, obtain parameters

Each material model has different data requirements The CAE Modeler first finds the required data

Example:

- Rate Dependent Model = Tensile stress-strain at many strain rates
- Hyperelastic Model = Uniaxial, shear and biaxial stress-strain data
- Visco-elastic Model = Stress relaxation curve

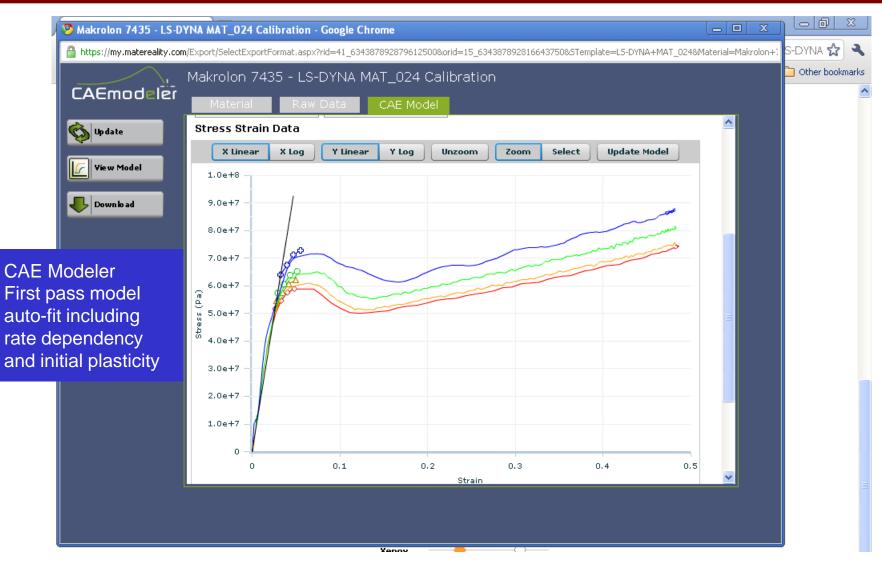
ect the CAE Model	ANSYS Elastic	Tutorial		
Case	ANSYS Fatigue ANSYS Hyperelastic ANSYS MISO		Supp	lier
Any (w)	AVGYS Rate Dependent AVSYS Thermal AVSYS Thermal Exp		Απγ	×



Only materials containing required data for that model are presented

Note: Some MBID wizard searches are highly restrictive to permit the necessary downstream data-processing. A failed search does not necessarily mean that processing with a search does additional manual data processing may be needed to make it ready for your end-use application.

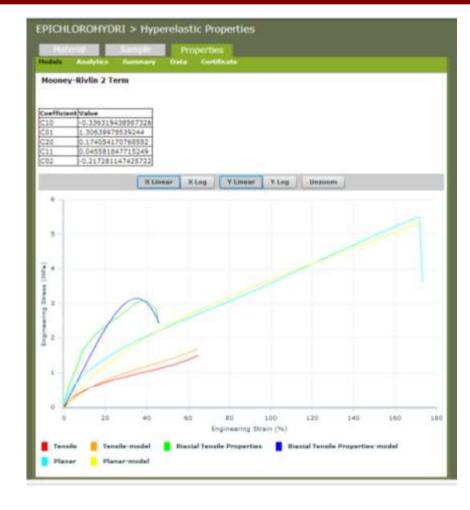
How a CAE Modeler works: transform rate-dependent data to LS-DYNA MAT24


🕤 Untitled - Google Chro	ome	_ O X	
https://my.matereality.com	m/Export/SelectExportFormat.aspx?rid=113_634707042678001250&orid=15_634707042468313750&STemplate=LS-DYNA+M Makrolon 7435 - LS-DYNA MAT_024 Calibration	MAT_024&Material=Makrolon+	S-[😭 🔝 🔧
CAEmodeler	Material Raw Data CAE Model		^
	Select the output format LS-DYNA (a): m.s.kg,N.Pa LS-DYNA (b): mm.s.kg,N.Pa LS-DYNA (c): mm.ms,kg,kN,GPa CSV Excel MATLAB MatML		
Powered By Matereality			

20

How a CAE Modeler works: fitting elasto-visco-plasticity

How a CAE Modeler works: manual tuning by CAE expert



/ 🦻 Makrolon 7435 - LS-DY	NA MAT_024 Calibration - Google Chrome			<u>x</u>
🔒 https://my.matereality.com	/Export/ModelCalibrator.aspx?rid=41_634387892879612500&orid=15_634387892816643750&PropResList=62522-586344%2c586345%2c58	36352%2c5	S-DYNA 🔂	3
CAEmodeler	Makrolon 7435 - LS-DYNA MAT_024 Calibration		Dther book	marks
Update View Model Download	Stress Ratios Strain Rate (/s) Stress Ratio 0.06929 1 0.2665 1.0545454545454545 2.665 1.1090909090909091 26.65 1.03636363636363 Stress Strain Data X Linear X Linear X Log Y Linear Y Log Unzoom Zoom Select Update Model			
improve rate dependency fit Click Update to apply your changes	1.0e+8 9.0e+7 8.0e+7 7.0e+7 6.0e+7			
	S.0e+7 4.0e+7			III

Data fitting of complex equations Storage of equation coefficients Deploy to CAE

Import CAE material card Convert to "raw data" Store "raw data" Run CAE Modeler Write a different CAE material card

CAE Modeler manages

- Writing time-consuming exotic formats
- Format changes with software version
- Eliminates data entry error

CAE Expert needs to define

- Terms not known
- Some terms assumed
- Impact on simulation = unknown

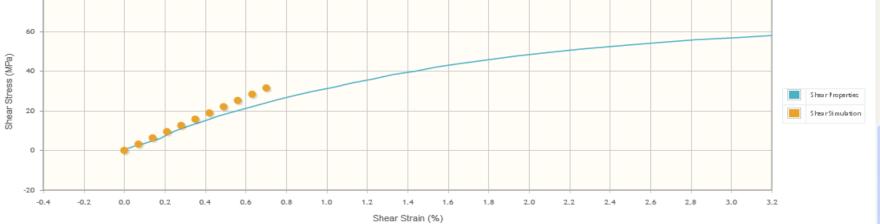
```
** Output generated by Matereality
** Abaqus Plastic Model
*MATERIAL, name=Delrin8753K13
*ELASTIC
3607.59123689013, 0.2413, -10
3183.7938807461, 0.323571664399527, 23
2174.59568965032, 0.39415, 60
****
*PLASTIC
46.381708640637, 0,-1.000E+01
59.3182190072696, 0.0028490427305577354,-1.000E+01
71.8736400512504, 0.01017006174294555,-1.000E+01
76.7156702762688, 0.016802750802138691,-1.000E+01
79.8204244473178, 0.0246331420035193,-1.000E+01
83.7520014704219, 0.042400203020399568,-1.000E+01
88.44580120706, 0.07511425176203515,-1.000E+01
101.286187380666, 0.18221125102592156,-1.000E+01
* *
41.2027474277636, 0,2.300E+01
48.0138087197766, 0.0021790259049776321,2.300E+01
57.359137021248, 0.00867790936047107,2.300E+01
62.9873556601982, 0.017373626682723388,2.300E+01
66.4967793306663, 0.027568865979447788,2.300E+01
70.9009392980115, 0.05004465060490744,2.300E+01
76.72575710626, 0.096883146480115784,2.300E+01
91.876816291205, 0.24545717623947155,2.300E+01
* *
30.11774647629, 0,6.000E+01
38.66825030697, 0.0039035831184979289,6.000E+01
48.5300393483556, 0.017108653508792655,6.000E+01
53.3730143012474, 0.03494428420354867, 6.000E+01
60.661535633334, 0.095585277502911209,6.000E+01
74.9317547325, 0.26978649975467672, 6.000E+01
81.885009651224, 0.35258702479111464,6.000E+01
92.151413540012, 0.46612695216059519,6.000E+01
* *
```

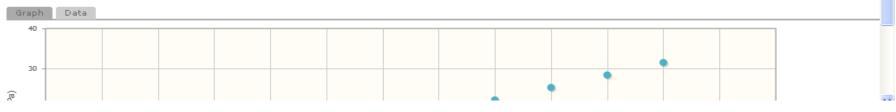

Store expert-created material cards Manage version control Manage CAE software version changes

Display 10	Search:	(First)	(Pressant) (2 (2 (4 (1 Neut Last
	Materialitame	ModelTame	Format	Created
) () ()	#753KE11 UHMWPE	AVEYS HISO	ANEYS Workbench 13	5/4/2011 9-57112 AM
() () ()	Ovino 8723KL3	AND/5 Electro	OM - ANDIS Munichensh	3/18/2011 11:42:14 49
() () ()	SAMTCHREESE SS Oursmeller	Alexy's Hyperelastic	AVEYS Workbareh 13	11/7/2011 3-00-33 #46
() () () ()	LATER 40 Ourometer	Soldworks Hyper	Solidworka	12/17/2012 12:29:34 999
() ()	8223H12 NYLON 46	SoliberisPlatuty	Dalidwarfet	10/16/2012 10:34:12 44
() ()	Ourethan & 20	ANDYS Danie	ANEVS Workbareh 13	4/29/2011 8-22-52 AM
••	ENICHLOROHYDRIN 60 Durismatar	ANSYS Hyperolastic	ARSYS Workbench 13	5/4/2011 10-40-08 AM
•				

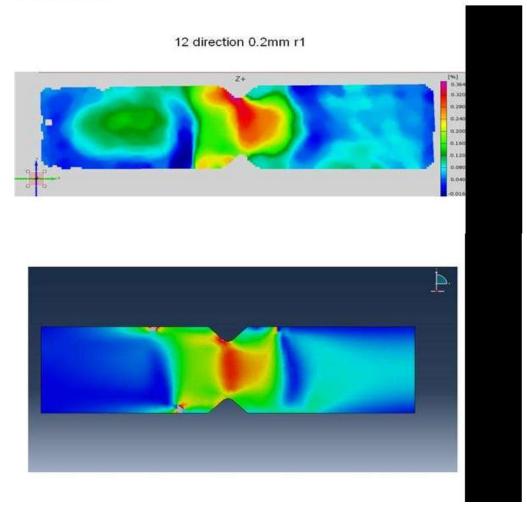
Cohabited datasets

experiment and simulation data share same platform


	×	Test Date	Project ID	Samula 10	Sample Hame	Material	Property	Access	Utadbility
-	1	2013-2-26	NATERS	21524	C BAUDA MARTINA AN	8183K36 Carbon Caingpulfa	Shear Properties	Privata	Maible
•	1	2012-2-26	PROFEMS	21504		BEBEKDE Carbon Composite	ilhear Simulation	Pricula	Vielbia


Validation Auto-comparing experiment and simulation

Shear Stress v. Time Step



Validation: Comparing strain field images

Effect of Experiment

Shear Field Image

What is your materials strategy?

Material data

- Precisely measured
- Perfectly managed

Thank you!

