

Thermoplastic Material Testing for Use in Sigmasoft

Materials

Testing × Data Infrastructure × Productivity Software

Plastic

Rubber

Film

Metal

Foam

Composite

Cement

Ceramic

Paper

Wire

Fiber

Product development / R&D support

- CAE-centric

- Commitment to simulation accuracy
- All kinds of materials
 - Over 1,800 materials tested each year
- All kinds of material behavior
 - Over 200 physical properties:
 - Mechanical properties
 - Thermal properties
 - Flow properties

Tensile Compressive Flexural Stress-strain Poisson's ratio High strain rate **Bulk modulus** Fatigue Viscoelasticity Stress relaxation Creep Friction **Hyperelasticity** Thermal expansion Thermal conductivity Specific heat PVTRheology

+ matereality

DatapointLabs

Customer Base

- 1200+ companies
- 11 manufacturing verticals
- Product development / R&D
- Globally available at www.datapointlabs.com visit | browse | buy | download

Aerospace Automotive Appliance Biomedical **Consumer products** Electronics Industrial goods **Materials** Petroleum Packaging

What is a Thermoplastic?

- Thermoplastics are solidified due to intermolecular bonds rather than chemical bond as in thermoset plastics
- Common thermoplastics
 - PET, PE, PVC, PP, PS, PA, ABS, etc.
- High performance
 - PEEK, PEI, PTFE, PSU, etc.

Amorphous and Semi-Crystalline

• Amorphous

- Random molecule chains
- Only glass transition
- Transparent materials are typically amorphous
- PET, PVC, PC, PMMA, PS, SAN, etc.
- Semi-Crystalline
 - Varying degree of crystallization
 - Molecules align and crystallize
 - Both glass transitions and melting point
 - PET, PP, PE, PA, PEEK, PEI, etc.
- Amorphous or Semi-Crystallinity is evident in test data

Required Testing

Rheometer Measurement of Viscosity

- Capillary rheometer is used
- Material is extruded through a restriction of known geometry (extremely high tolerance dies)
- Temperature and flow rate are controlled
- Pressure drop across the restriction is used to determine viscosity as a function of shear rate and temperature

Capillary extrusion rheometer

Viscosity Properties

• As shear rate increases viscosity decreases

Viscosity Properties

• As temperature increases viscosity decreases

Viscosity Measurements

- Apparent Viscosity
- Shear rate:
 - Shear stress:
 - Shear viscosity:

$$\gamma_a = \frac{2}{\pi d^3}$$
$$\tau_w = \frac{\Delta p d}{4L}$$
$$\eta_a = \frac{\tau_w}{\dot{\gamma}_a}$$

320

Where: Q = Volume flow rate $\Delta p =$ Pressure drop d = Capillary diameter L = Capillary length

- Corrections to viscosity
 - Reservoir and friction losses (transducer located at die)
 - End pressure drop (Bagley)
 - Non-parabolic velocity (Rabinowitsch correction)

Bagley Correction Testing

- Bagley Correction
 - Perform viscosity measure on two different die ratios at equal shear rates
 - Evaluate pressure differences between die geometries (capillary diameter remains the same)
 - $\Box \ \tau = R/2(dP/dL)$

Viscosity Modeling

- Very strong rheological models
 - Cross WLF
 - Combines a model of shear rate dependency with temperature dependency $\eta_0(T)$
 - Allows us to predict beyond testing range

n	0.28400
τ*	32096.1
D1	3.86E+13
D2	263.15
A1	30.87
A2	51.6

Evaluation of the Cross WLF Parameters

- The parameters are tied to real physical behavior
- N measures shear thinning behavior
 - inverse of the power-law index
- rules for N
 - 0 < N < 1
 - small N = shear sensitive
- \Box τ^* is the critical transition stress for shear-thinning behavior
 - if τ^* is large, wide Newtonian region
 - if τ^* is small, narrow Newtonian region
 - $-\tau^*$ is small for simple linear polymers
 - eg HDPE, LDPE, PP
 - $-\tau^*$ is large for polymers with large side chains
 - eg. PC

$$\eta(T, \dot{\gamma}) = \frac{\eta_0(T)}{1 + \left(\frac{\eta_0 \dot{\gamma}}{\tau^*}\right)^{1-n}}, where$$
$$\eta_0(T) = D_1 \exp\left[-\frac{A_1(T-D_2)}{A_2 + (T-D_2)}\right]$$

Evaluation of the Cross WLF Parameters cont.

- D1 is coupled to the WLF temperature dependency equation $n(T, \dot{\gamma}) = \frac{\eta_0(\dot{\gamma})}{\eta_0(\dot{\gamma})}$
 - No direct relevance
- D2 is the reference temperature
 - Theoretically where η goes to infinity
- $A_1 \& A_2$ WLF parameters
- A₁ defines the temperature sensitivity of viscosity
- A₂ defines change in temperature sensitivity with temperature

$$\eta(T, \dot{\gamma}) = \frac{\eta_0(T)}{1 + \left(\frac{\eta_0 \dot{\gamma}}{\tau^*}\right)^{1-n}}, where$$

$$\eta_0(T) = D_1 \exp\left[-\frac{A_1(T-D_2)}{A_2+(T-D_2)}\right]$$

Considerations for Testing

- Limited in shear rates
 - Typically test 10-10000 /s
- Residence times are longer in testing
 - Testing takes several minutes (approx. 6-10 min.)
 - Need to worry about thermal stability
- Typically testing is performed at two temperatures within the processing range and one below

Problematic Materials

- Moisture sensitive materials
 - Improperly dried materials cause reduction in viscosity
 - Over dried materials cause a rise in viscosity
 - PET, PA, PC, etc.
- Highly filled materials
 - Can "log jam" the die entrance
 - Special dies must be used
 - Higher scatter in test data requires engineering judgment on behavior
- Thermally unstable materials
 - Requires very careful attention to residence times

Specific Heat

- DSC (Differential Scanning Calorimeter)
 - Small samples sizes (7-15 mg)
 - Differential heat required to raise the temperature of the sample as compared to a reference
 - Performed in cooling to replicate molten material cooling to solidification
- Used in the simulation to determine how much energy must be dissipated to promote solidification

Transition Analysis

- Semi-Crystalline materials show a peak in the specific heat curve
 - The peak is due to the addition heat needed to initiate crystallization
 - Due to thermal lag, transition
 temperatures measured in cooling
 mode will be lower than those measured
 in heating
 - The onset of the transition is set as the melting point to ensure complete solidification of the polymer
 - The point at which the peak ends is set as the eject temperature
 - Beyond the eject temperature, no flow can tak

Transition Analysis cont.

- Amorphous materials show a "knee" in the specific heat curve
 - The knee is the glass transition of the material, no crystallization takes place
 - The onset of the transition is set as the melting point to ensure complete solidification of the polymer
 - In this case the inflection point of the knee is taken as the eject temperature
 - Beyond the eject temperature, no flow can take place

Thermal Conductivity

- A measure of how well a material transfers heat
 - Measured using transient line source
 - Measured in melt and solid state
 - Different behaviors for semi-crystalline and amorphous

Measure time to dissipate the heat pulse away from probe

Thermal Conductivity

- Semi-crystalline materials show an increase in thermal conductivity in solid state
- Amorphous materials show a decrease in thermal conductivity in solid state
- The addition of fillers increase thermal conductivity
- Thermal conductivity of polymers is much lower than metals
 - Copper: 400 W/mK
 - ABS: 0.176 W/mK

Density as a Function of PVT (Pressure Volume and Temperature

- Isobaric cooling scan (for semi-crystalline materials)
 - Need to accurately capture the onset of crystallization
 - Much longer run times
- Isothermal heating scan (for amorphous materials)
 - No crystallization so transition is independent of mode
 - Much faster (relatively)
- Pressures of 10 200 Mpa
- Measure both solid and melt domains

PVT Testing

- Difficult and time consuming test
 - Initial density at ambient conditions
 - Mercury used as confining fluid
 - High temperatures and pressures
 - Complex datasets
 - True hydrostatic state

PVT Test Data

- Semi-Crystalline material
 - Transition region is critical
 - Rise in temp. = rise in spec. vol.
 - Rise in press. = drop in spec. vol.

PVT Test Data

- Amorphous material
 - Transition is not dependent on mode

PVT Modeling

Temperature (°C)

DatapointLabs

+ matereality

Two-Domain Tait PVT Model:

DatapointLabs + matereality

PVT Modeling cont.

- b1m is the specific volume at b5
- b2m is the slope of the melt region
- b3m is the pressure sensitivity or spread of the melt fit
- b4m is the pressure sensitivity of the melt state slope
- b1s through b4s are the same but for the solid state

Iwo-Domain Tait PVI Model:			
b5	4.202E+02 K		
b6	2.000E-07 K/Pa		
b1m	1.081E-03 m ³ /kg		
b2m	7.707E-07 m ³ /kg•K		
b3m	6.864E+07 Pa		
b4m	3.209E-03 1/K		
b1s	1.011E-03 m ³ /kg		
b2s	4.442E-07 m ³ /kg•K		
b3s	1.397E+08 Pa		
b4s	1.752E-03 1/K		
b7	7.064E-05 m ³ /kg		
b8	8.027E-02 1/K		

Problematic Materials

- Thermally unstable materials
- Materials that have voids
- Very high melting point materials
 - Limitation of machine is 400°C
 - Mercury boils at 356°C under atmospheric conditions (test at minimum of 10 MPa)
 - PEI, PAEK

DatapointLabs + matereality

Thermal Expansion

- TMA (Thermo Mechanical Analyzer)
 - 10 x 10 mm x thickness plaques
 - Low expansion quartz probe and station
 - Constant heating rate
 - Slope of δL over temperature
- Orientation
 - One direction for no fiber
 - Two directions for fiber filled

Thermal Expansion Test Data

- Data presented as calculated slopes that are constant over the test range
 - Plot of probe position vs. temperature ensures linear relationship
- Anisotropic materials
 - Measurements across the flow always higher
 - Fibers have less thermal expansion than polymer

CLTE				
flow direction (a.1)				
	0° to 60°C			
replicate 1	6 x 10-6 / °C			
replicate 2	6 x 10-6 / °C			
replicate 3	6 x 10-6 / °C			
average	6 x 10-6 / °C			
cross-flow	direction (a.2)			
	0° to 60°C			
replicate 1	34 x 10-6 / °C			
replicate 2	33 x 10-6 / °C			
replicate 3	31 x 10-6 / °C			
average	33 x 10-6 / °C			

Problematic Materials

- Continuous fiber materials
 - Test probe sits directly on the fibers that have similar CLTE to probe
- Residual stress after molding
 - Require additional annealing operation to alleviate stresses
- Very soft materials
 - Probe penetrates sample
- Films
 - Special test methods are required
 - Tend to show shrinkage due to processing method

Mechanical Properties

- Tensile tests performed on a UTM
 - Temperature chamber
 - Axial and transverse strains
- Measure only the unfilled polymer
 - Fibers added in with the micro-mechanical model
- Stress strain curves at multiple temperatures
 - Modulus (σ/ϵ)
 - Poisson's ratio ($\epsilon 2/\epsilon 1$)
 - Viscoelastic properties

E

Viscoelaticity

- Only valid for unfilled materials
- Performed at constant strain rate
 - Converted to relaxation times
 - Multi-temperature allows for temperature dependent relaxation

Properties				
Temp. °C	Modulus E	Poisson's Ratio		
	MPa			
23	3010	0.372		
50	2564	0.390		
75	1555	0.426		
100	480	0.465		
125	2	0.480		

η

Implementation Into Sigmasoft

- X-Y pairs in text files
 - Viscosity (3)
 - Specific heat (1)
 - Thermal conductivity (1)
 - PVT (4-6)
 - CTE (1)
 - Mechanicals (5)
 - At least 17 input files

Implementation Into Sigmasoft

- General parameters
 - Material type \rightarrow Plastic (Semi-crystalline or Amorphous)
 - Initial temperature \rightarrow minimum temperature
 - Material models → PVT (Tait), Viscosity (Cross WLF), Stress (Viscoelastic), Fiber Model (Deactivated when viscoelastic is used), Crystallization (Weibull, when semi-crystalline material is selected)

Edit Material of database User			76 Edit Material of database User		
ata Edit Memo		Help	Data Edit Memo		٢
	Material: test			Material: test	
General Parameters			General Parameters		<i>4</i>
Material type:	Plastic		Material type:	Plastic	J
Initial temperature	°C		Initial temperature	180.00	°C
No-Flow Properties:	<unset></unset>		No-Flow Properties:	Based on pvT]
	Amorphoue		pvT material type:	Semi-Cristalline	J
pvi materiartype.	Amorphous		pvT model:	Tait	[
pvT model:	<unset></unset>		Crystallization model:	Deactivated	1
Rheology model:	<unset></unset>		Rheology model:	Cross-WLF	1
extensional Rheology model:	<unset></unset>		extensional Rheology model:	Off	
Viscosity relaxation model:	<unset></unset>		Viecesity relevation model:	Deactivated] 1
	<unset></unset>	1	viscosity relaxation model.	Deactivated](
	í		Fibre Model:	Deactivated	
Stress Model:	<unset></unset>		Stress Model:	Viscoelastic	

Implementation Into Sigmasoft

	76 Edit Material of database User		
	Data Edit Memo	Help	
Thermal conductivity	Global Information 183		
Specific heat —	General Parameters Global Lambda Rho pn		
Viscosity	Cp fs C Rho*Cp (view only)	<u>^</u>	
PVT	No-Flow Properties		
CTE	Reactive Viscosity		
Mechanicals	Crystallization		
Order of input counts	Vitrification Reaction-Kinetics		
– PVT, Cp, Lambda, Vise,	Young's Modulus		
CTE, mechanicals	Thermal Expansion Coefficient StressStrain Relaxation time	<u>_</u>	
	Protection: Unprotected		

Successful Simulation! Testing Under \$5000

Questions?

Contact us: www.datapointlabs.com