

Comments on the Testing and Management of Plastics Material Data

Hubert Lobo DatapointLabs + Matereality

automotive CAE Grand Challenge 2014 15th – 16th April, 2014

1

Introduction to the companies

Materials

Testing × Data Infrastructure × Productivity Software

2

1986 - Cornell Injection Molding Program (CIMP)

Research: Properties of molten plastics for CAE

1995 - Datapoint Testing Services

Commercialization: Properties of plastics for molding CAE

1998 - TestPaks Alliance Program

Partnerships with FEA companies – properties & modeling for FEA

2000 - Company rebranded as DatapointLabs

Supporting 8 simulation codes for plastics

2002 - Matereality started

R&D to create multivariate material database for plastics

2014 - Today

Testing any materials any properties, supporting 34 CAE codes Super-database+software to analyze and transform material data

Data of multi-dimensional complexity

- Nonlinear
- Multivariate
- Anisotropic
- Effects of processing

Maintain data self-consistency

• Slicing data without introducing artefact from multi-varying parameters

Data storage infrastructure must accommodate this complexity

- Ability to house multivariate data of any kind
- Graphical tools for multivariate analytics (comparison, statistics)
- Slicing and translation of data into CAE material cards

Performance

- Stiffness
- Failure
- Vibration
- Fatigue
- Creep and relaxation
- Impact

Process Simulation

- Injection molding
- Blow molding
- Thermoforming
- Extrusion

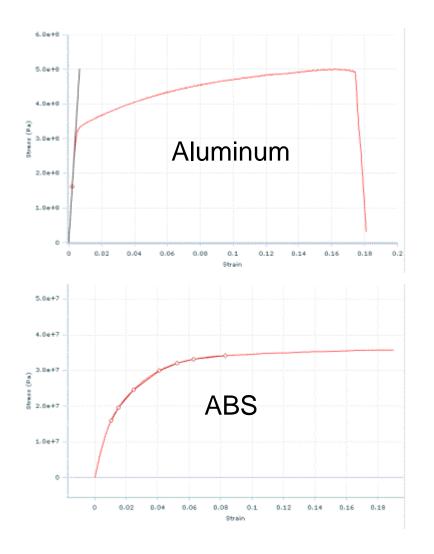
Stress-strain relationship is linear until yield

Properties do not change over operating temperature range

Properties do not change much with time

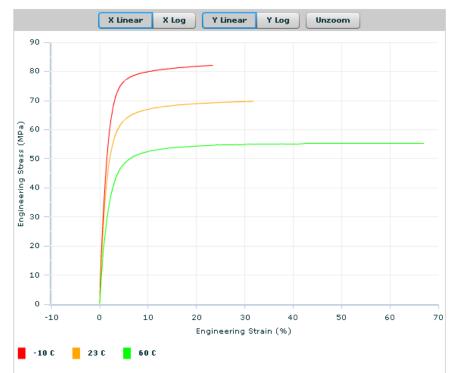
- Rate effects are modest
- Creep/stress relaxation is not a big issue

Generally isotropic or worst case, bi-directional


Well established material models mimic metal behavior

Stress-strain is nonlinear

- Nonlinear elasticity
- Pre-yield plasticity
- Viscoelastic (time based effects)
- Volumetric straining at yield
- Localized necking



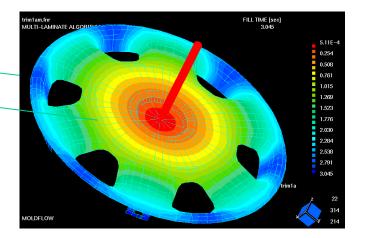
Properties change with

- Temperature
 - Low temperature embrittlement
- Rate
 - Ductile-brittle transitions
- Humidity / Heat aging
 - Embrittlement
- Environment Fluid soak
 - Lowering in modulus / viscoelastic characteristics

Effect of temperature

Engineering Tensile Stress-Strain Curves

Properties affected by process


Injection-molded plastics

- Skin-core-skin sandwich
- Weld lines_
- Residual stresses
- Spatial variation in x-y plane with fiber-filled plastics

Blow-mold/thermoform/extrusion

- MD and CMD orientation
- Strong residual stresses
- Thickness variation
- Multi-layer effects
- Partial crystallization

9

Part 1 – for the plastic material

- Identify the variables
- Test for the effect of variables (DOE?)
- Perform multivariate analytics to quantify effects

Part 2 – for the plastic component

- Identify the case under investigation
- Determine which variables to fix
- Obtain parameterized test data
- Convert to material model parameters

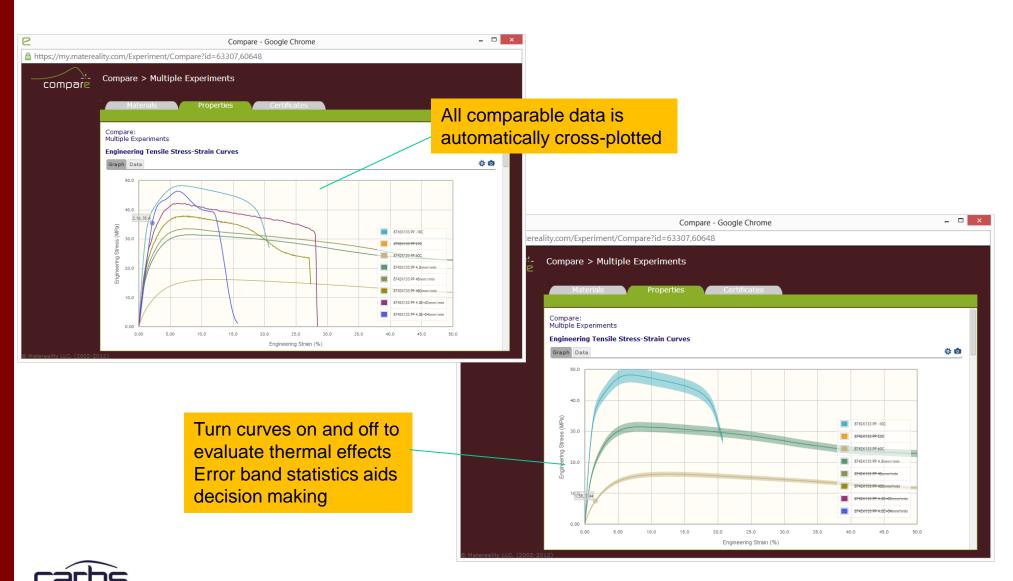
CAE GRANDO CHALLENGE

Identify variables

- Temperature (-40 to 80C)
- Strain rate (.01 to 100/s)
- Creep/stress relaxation
- Environment
 - Sunlight
 - Paint/coatings
 - Salt/humidity
- Fiber filler: none

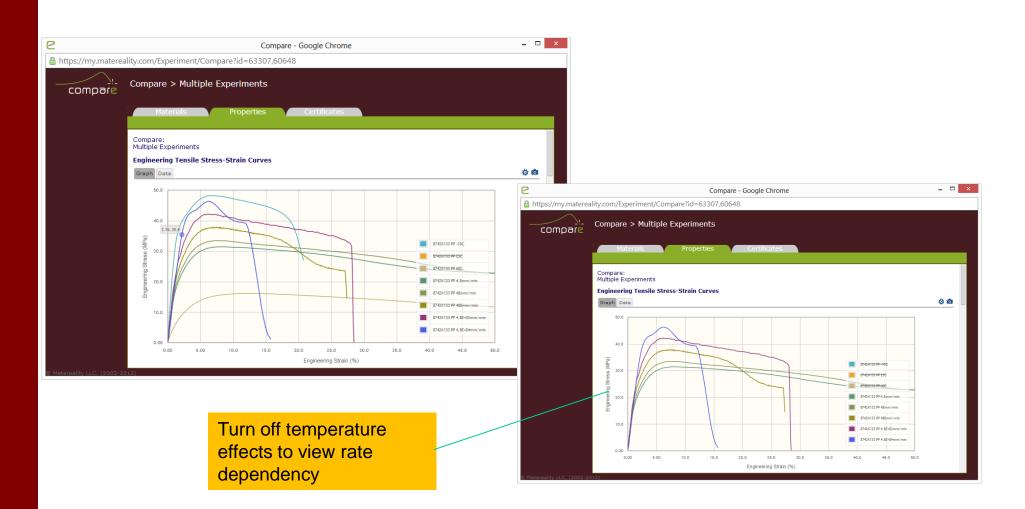
Procedure

- Develop test matrix
- Select parameters and variables
- Perform tests
- Dump data into Matereality



Using multivariate analytics

	My Workgroup	×	W The	ermoplastic ole	efin - Wil 🗙							- 🗆 ×
	← → C Attps://my.matereality.com/MyWorkgroup#Active											☆ =
											tings Logout mo Purposes	
	Search Tools	Compare My Workgroup Published Unpublished In Review Downgraded Selection										
	Sh are		Display 10 First Previous 1 2 Next Last 1 to 10 of 11 (460 total)									
			A	Owner 🔶	Test Date 🔶	Project ID	Sample ID 🔶	Sample Name 🔶	Material 🔶	Property 🔶	Access 🔶	Visibility 🔶
				dtl-nonlin	2009-8-6	16856	15387		8539K13 NYLON 66	Tensile Properties	Private	Visible
				dtl-nonlin	2009-8-6	16856	15388		8586K162 ABS	Tensile Properties	Private	Visible
				dtl-nonlin	2009-8-6	16856	15389		8619K441 HDPE	Tensile Properties	Private	Visible
				dtl-nonlin	2009-8-6	16856	15390		8752K111 UHMWPE	Tensile Properties	Private	Visible
Select multivariate data:			. 🖉 🍥	dtl-nonlin	1899-12-30	16856	15391		8742K133 PP	Tensile Properties	Private	Visible
-temperature	dependent ent			dtl-nonlin	2009-7-22	16856	15392		Delrin 8753K13	Tensile Properties	Private	Visible
-rate depende				dtl-nonlin	2010-2-17	16856	15391		8742K133 PP	Compressive Properties	Private	Visible
Then click Co				dtl-nonlin	2010-2-17	16856	15391		8742K133 PP	Shear Properties	Private	Visible
				dtl-nonlin	2010-1-27	16856	15391		8742K133 PP	Solid Density	Private	Visible
				dtl-nonlin	2010-2-17	16856	15391		8742K133 PP	Tensile Properties	Private	Visible



Analytics: rate effects

15

CAE Modeler slices multivariate data into CAE-consumable slices

- rate dependency for LS-DYNA, PAMCRASH, ANSYS, ABAQUS...
- temperature dependency for ABAQUS, ANSYS...
- flow/thermal/PVT/shrinkage data for Moldflow, Moldex3D, Simpoe...

Converts material data to model parameters

Writes files to Material Model Library

Abaqus FeFp

• Nonlinear elasticity with pre-yield plasticity

Abaqus PRF (evaluation project with Simulia)

Viscoelasticity and nonlinear viscoelasticity

SAMP-1

Post-yield non-Mises behavior

MATFEM MF GenYld+CrachFEM (evaluation project with MATFEM)

• Post-yield non-Mises behavior and failure

DIGIMAT

- Spatial variation of properties due to fiber-orientation
- Rate dependency, creep, viscoelasticity, fatigue and failure

SAMP-1 case study: polycarbonate for headlight lens

Features

Isotropic material model

Tensile rate dependency

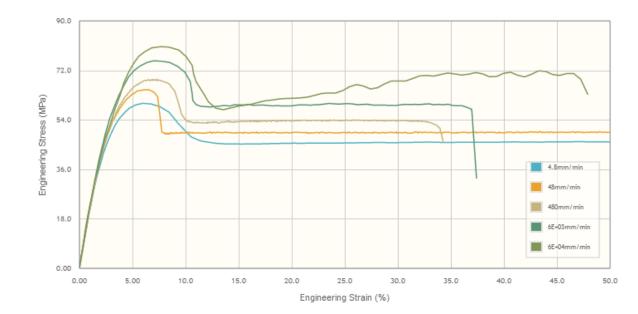
Deviatoric and volumetric plasticity

Non-Mises yield locus

Application

Post-yield plasticity

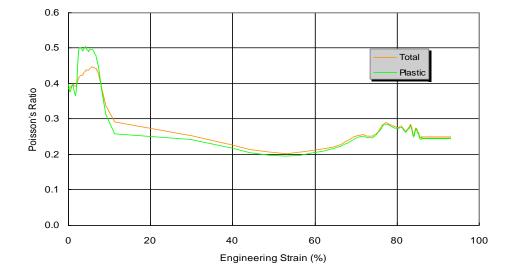
Not specified for failure prediction


Testing Requirements

Rate dependent tensile data

Yield locus

Plastic Poisson's ratio

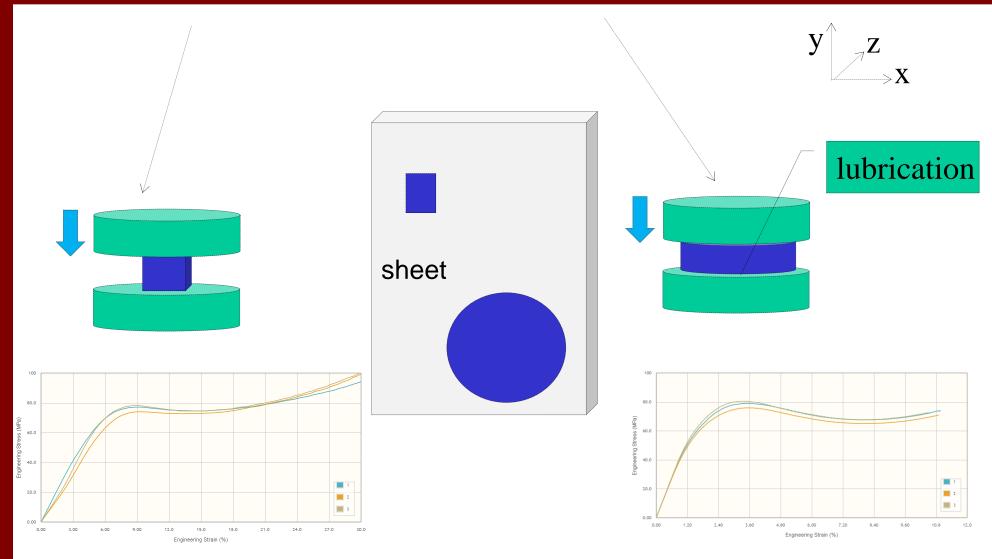


- •Quantifies the volumetric change that accompanies plasticity
- •Large volumetric change at yield

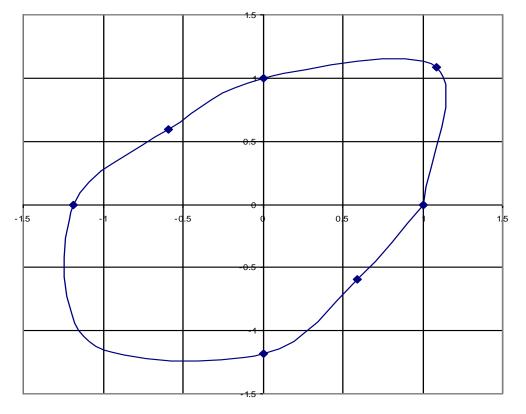
losipescu methods

DIC

Shear stress-strain for PC



4.421 3.750 3.000 2.250 1.500 0.750 0.000


SAMP-1 Compressive and biaxial tests

May not follow von Mises criterion

Melt state properties (injection molding)

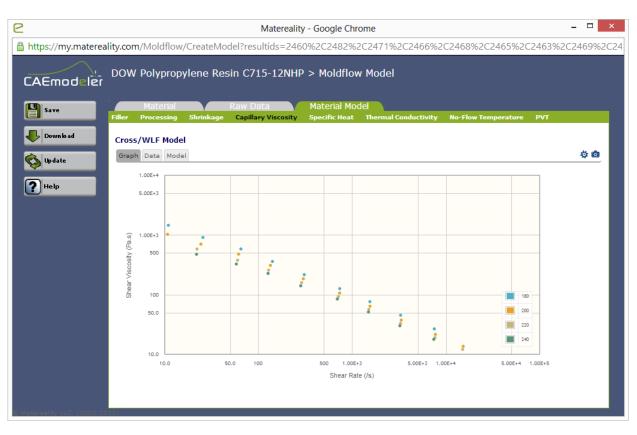
- Non-Newtonian temperature dependent viscosity
- Thermal properties
- Pressure-volume-temperature (PVT)

Solid state properties

Mechanical & thermal properties for shrinkage/warpage

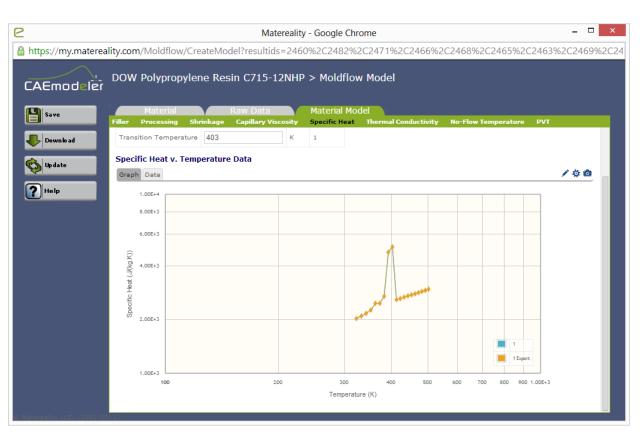
Viscoelastic properties (blow-molding/thermoforming/extrusion)

- Frequency or time based response in melt state
- •Rate dependent biaxial properties in melt



23

3-4 temperaturesEffect of shear rateData corrections

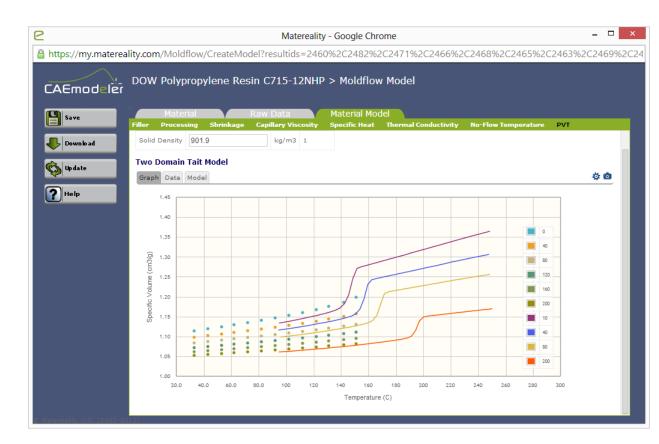


Testing for molding simulation: specific heat

Cooling Mark the transitions

Testing for molding simulation: thermal conductivity

Cooling Mark the transitions



Many schemes possible

- Isothermal heating
- Isobaric cooling
- Mark transitions

Many schemes possible

- Orthotropic
 - Moldflow, Moldex3D, SIMPOE
- Orthotropy with viscoelastic
 - Sigmasoft
- **CRIMS** \bullet
 - Moldflow •

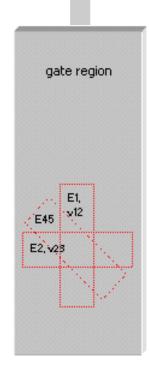
DIGIMAT- for process-induced spatial variation of properties Case Study: Automotive Instrument Panel (PP/GF) Process

- Obtains orientations input from process simulation
- Applies a DIGIMAT material model to scale properties based on orientation
- Transfers model with spatially varying properties to FEA

Available material models

- Stiffness
- Failure
- Crash simulation
- Creep and viscoelasticity
- Fatigue

29


Mold 100X200X3.16mm plaques

- Edge gated on 100 mm end
- Long flow length
- Fully developed flow
- High fiber orientation

Cut test specimens by CNC 5 specimens each (0°, 45°, 90°) Obtain true stress-strain data Test for other characteristics

creep, fatigue, viscoelasticity

Plastics are challenging materials

- Plastics bring important business advantages over conventional materials
- Plastics carry considerable risk if improperly used
- Understanding the behavior of your plastics is vital
- Knowing how the plastics will perform in **your** products is critical
- Material testing is key to developing this understanding
- Material data is often not generic but specific to the products (Dr. Kolk, BMW 2013)
- Valuable and expensive test data must be carefully kept and consistently used

Thank You!

